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NONLINEAR PROBLEM OF HEAT CONDUCTION FOR A HEAT-SENSITIVE SPHERE 

Yu. M. Kolyano, E. G. Ivanik, 
and O. V. Sikora 

UDC 539.377:536.12 

The nonlinear problem of heat conduction is solved for a sphere which exchanges 
heat through its surface with the external medium according to Newton's law. 
The temperature field is investigated. 

Consider a heat-sensitive sphere which has an initial temperature tin and through 
whose spherical surface r = R heat is exchanged with the external medium, whose temperature 
jumps from 0 to t 0. The nonstationary temperature field determined by a prescribed heating 
action is determined by solving the following boundary-value problem: 

] a I r ~ ( t ) ~ r ] = e ~  ' 
r 2 Or 

tl-~=o= i n , ~ - .  =0, z(t)---v.[ t-- toS+(~)]  =0. 
or  r=O Or ~ ,=R 

(1 )  

( 2 )  

Introducing Kirchhoff' s substitution 

I i 
(3) 

t i n  

and making the assumption that Cv(t)/i(t) = a ~ const, we convert the nonlinear boundary-value 
problem (i)-(2) into the form 

1 a [r ~ a~ i ~ (4) 

a~ = o, ~ ~o-~f ~ i t -  ~oS+(~)] = o, (5 )  

where ~0 is the reference value of the thermal conductivity. 

The boundary condition at the boundary r = R contains the function t(R, ~), i.e., 
the solution of the desired nonlinear problem, taken on the boundary surface. It is obvious 
that t(R, ~) is a function of time only. For this reason, we approximate it with the help 
of splines of zero order, i.e., with the help of asymmetric unit step functions, as follows: 

t (R, ~) = %+ ~ t ,s_ ( ~ - ~ ) ,  ( 6 ) 
i ~ l  

where ti, where i = 1 .... , m, are, as yet, unknown values, and T i are the partition points 
on the straight line (0, ~). 

We note that the representation (6) is adequate for determining the step functions 
introduced in [i]. Since any continuous and monotonic function is the uniform limit of 
step functions, the expression (6) is legitimate and correct. 
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Fig. I. Dimensionless temperature T as a function of Fourier' 
number Fo: a) Bi = i0; 1) p = 0; 2) i; b) p = 0; i) Bi = 0.I; 
2) i ;  3) 10; 4) i00. 

Substituting Eq. (6) into the boundary conditions (5) we arrive at the following 
boundary-value problem with boundary conditions of the second kind for determining the 
Kirchhoff variable: 

r~ a,- \  - ~ r ) -  a '  
O~ / Off 

= o, : o, Xo--=-a,. - 

(7)  

- - - q ( ~ ) ,  ( 8 )  

where 

q (~) : o~ [ t i~-  toS+ (~) + 2 tiS- (~-- ~) ] . 

The solution obtained for the boundary-value problem (7)-(8) using the Laplace trans- 
form has the form 

Here 

(r, ~) = Bi [ q ~  toS+ ('01 r - -~,  Fo + ~ ~ r  ---R-, Fo - -  Fo, . 
, i = l  

,) r2 ~ R s i n l ~  R exp(--b~Fo) 
" r , Fo = 0,1 3 - - 5  R ~ - - 3 F o + 2  

@ ( R .... ~=~ r l~  s cos 1~ 

(9) 

S+ (Fo), 

a ~2 aT, i o~R 
Fo---- R 2 , Foi-------R 2' Bi------%0 and ~n are the roots of the transcendental equation tan ~ = D. 

Many authors [2-4], who linearize the nonlinear boundary-value problem with the help 
of Kirchhoff's variable, take the boundary condition at the boundary r = R in the following 
form: 

2~o--O--C~- [ + ~ [~,~=~- toS+ (~)] = 0 ,  ( lO)  
O F ]  r : R  

i.e., they approximately set t m O, which, of course, is not entirely legitimate. 

In this case, the solution of the differential equation (4) with the boundary condition 
(i0) will have the following form: 

R sin ~ ~ 
~,  (r, ~) --- to 1 --  Ak - - -  exp (-- ~Fo) , (11)  
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Fig. 2. Dimensionless temperature T as 
a function of the radial coordinate 
p with Fo = 0.i and Bi = 0.i (i), i (2), 
i0 (3), and i00 (4). 

where Ah = 2 sin ~k -- ~h cos ~k ~---s in~kcos~h and in  a d d i t i o n  8k a r e  d e t e r m i n e d  from t h e  t r a n s c e n d e n t a l  equa-  

t i o n  (1 - B i ) t a n  $ = ~. 

In order to investigate the temperature field, determined by a prescribed heating action, 
it is necessary to have a specific temperature dependence of the thermal conductivity. As 
an example, we take a linear function [4] 

(t) = ~o (1 -- kot), (12) 

where k 0 = 0.00006 i/~ X 0 = 50.2 W/(m'~ 

Substituting Eq. (12) into Eq. (3) and carrying out the required transformations, we 
obtain an expression for the desired temperature field in the heat-sensitive sphere, expressed 
in terms of the Kirchhoff's variable 

] ( 1 3 )  
t ( r ,  "c) = ~ o [ 1  - -  q f (1  .... /eotin) 2 -  2ko~ (r, "Q ]. 

The expression (13) contains the unknown quantities t i. They can be determined from 
the following relation: 

t * S _ ( F o - - F o , ) = 7  - ~ .  (1, Fo ) - -2K , B i  t*cD(1, Vo--Foi) .  (14) 
i = !  / = !  

to \ 
Here 7 = K T ' - - l , K , = k o t i n ,  t * -  tz , W(1, Fo) = (1- -  K,) 2 --2K,Bi t - - T - i n  ) @(1, Fo). 

tin 

Setting in Eq. (14) Fo = Fo i (i = i, m) we obtain the following recurrence relations for 
determining the values of t~: 

i - - I  i - - i  

t ; : = T  ...... K7 ~ W(I, Fo~)--2K,Bi Z t r Y ( l ,  Foz--Foi)S+(Fo~--Fos)-- E tfS+(Z% Fcj). (15) 
i=l /=I 

Thus, substituting the values found for t~ into the expression (9) and then substitut- 
ing Kirchhoff's variable 6(r, T) into Eq. (13), we determine the desired temperature field 
in the heat-sensitive sphere. We note that in order to find t~ we start from the following 
considerations: the number of terms in the expansion (6) is determined by the condition 

Itz%l - -  t t l ~  s,  

where s = i0 -s 

We performed numerical calculations, using the formula (13), of the distribution of 

the dimensionless temperature T(@, Fo) t(r,~) = as a function of the coordinate p = r/R and 
tin 

105 



Fourier's number Fo for different values of Blot's number Bi. In the calculations we took 
Gin = 20~ and t o = 300~ The results are presented in the form of plots in Figs. 1 and 
2. The solid curves correspond to the solution of the nonlinear boundary-value problem 
of heat conduction with Kirchhoff's variable, calculated from the formula (9), while the 
dot-dashed~curves were calculated with Kirchhoff's variable taken in the form (I0), i.e., 
they represent the approximate solution. The dashed lines correspond to the solution of 
the linear boundary-value problem, i.e., under the assumption that the thermophysical char- 
acteristics do not depend on the temperature. 

The numerical calculations showed that when the temperature dependence of the thermo- 
physical characteristics is taken into account the temperature is lower than the corres- 
ponding temperatures in a uniform heat-insensitive body. It should also be noted that 
linearizing the boundary condition of the third kind, performed by simply replacing t with 
~, results in a significant distortion of the behavior of the temperature in the heat-sesi- 
tive sphere even in the case when the characteristics are linear functions of the tempera- 
ture with a comparatively small value of the coefficient k 0. 

NOTATION 

t, temperature field; ~, Kirchhoff's variable; %, thermal conductivity; Cv, heat 
capacity at constant volume; a, heat-transfer coefficient of the surface r = R; S• 
asymmetric unit step functions; ~, time; and r, radial coordinate. 
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VARIATIONAL FORMULATION OF A NONSTATIONARY HEAT-CONDUCTION PROBLEM 

V. A. Bondarev UDC 536.2:517.9 

A functional for a heat conduction problem is determined from thermodynamic con- 
siderations; also a class of functions is determined in which it is possible to 
realize an extremum of the functional. 

According to the second law of thermodynamics, in a nonstationary thermodynamical phy- 
sical system only such spontaneous processes are possible which bring a system of bodies 
participating in heat exchange closer to equilibrium. In addition, the rate of approach 
to equilibrium is determined by an increase of entropy s, which reaches a maximum value 
in the state of equilibrium. In the case of a variational formulation of a nonstationary 
heat conduction problem, arbitrarily small variations in the solution ~ can be regarded as 
the result of the action of some fictitious sources of heat in the system. If the solution 

is varied in such a way that the fictitious forces lead to a change of entropy in a direc- 
tion away from equilibrium with respect to real processes, then, for the same initial and 
boundary conditions, the time for the system to approach equilibrium will increase. Then 
the largest rate of approach to equilibrium will correspond to the solution ~. 

In view of the above, it is appropriate to assume that for the nonstationary heat con- 
duction problem a functional can be constructed having an extremum at the solution ~, real- 
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